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Abstract

As HPC systems approach Exascale, their circuit feature will shrink, while their
overall size will grow, all at a fixed power limit. These trends imply that soft
faults in electronic circuits will become an increasingly significant problem for
applications that run on these systems, causing them to occasionally crash or
worse, silently return incorrect results. This is motivating extensive work on ap-
plication resilience to such faults, ranging from generic techniques such as repli-
cation or checkpoint/restart to algorithm-specific error detection and resilience
techniques. Effective use of such techniques requires a detailed understanding
of (1) which vulnerable parts of the application are most worth protecting (2)
the performance and resilience impact of fault resilience mechanisms on the ap-
plication. This paper presents FaultTelescope, a tool that combines these two
and generates actionable insights by presenting in an intuitive way application
vulnerabilities and impact of fault resilience mechanisms on applications.

Keywords: Soft faults, High-performance computing, Numerical errors, Fault
resilience

1. Introduction

The increasing size and complexity of HPC systems is making them increas-
ingly vulnerable to soft faults, which are transient corruptions in the states of
electronic circuits caused by physical phenomena such as strikes by neutrons or
alpha particles [1, 2] or thermal electrical noise [3]. They can affect the state
of processor latches and registers, and may cause the application to crash or
silently return incorrect results [4]. As the feature sizes of electronic circuits
shrink, technology scaling will make soft errors a larger problem [5] due to the
fact that each circuit element will hold less charge and can thus be disrupted
more easily. In particular, processors in 2020 are expected to have feature sizes
(DRAM ½ Pitch) of approximately 14 nm [6], which is approximately 28 silicon
atoms ( 5 Å per atom) across. These phenomena make it imperative to develop
techniques to make HPC systems resilient to soft faults.

The resilience problem must be addressed at all levels. While materials
science and circuit design techniques can be used to improve resilience, they
come at a cost in reduced power efficiency and performance that can become
prohibitive if processors need to be sufficiently reliable to build a large HPC
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system. Techniques such as error correcting codes (ECC) have been very ef-
fective at making memories and caches resilient to soft faults [7]. However, as
total system memories of systems are expected to grow by 100x to 350x to reach
Exascale [8] their increased fault vulnerability will require more elaborate and
expensive ECC to be deployed. Further, ECC is more expensive for protecting
core-internal state such as latches and is significantly less effective for checking
the correctness of computations. Processor designs that incorporate instruction
replication [9] offer fine-grained error detection and rollback but require more
power as well as novel hardware features that are unlikely to be included in the
commodity processors used in HPC systems for cost reduction reasons.

The limitations of hardware-level resilience solutions have motivated signifi-
cant work on the design of software-level techniques that can enable applications
to execute productively on unreliable hardware. The most general approach is
replication of computations across core or nodes [10, 11], which is very easy to
use but can incur a high overhead due to repeated computation, result com-
parison, and management of non-determinism across replicas. There has also
been extensive work on much cheaper but highly manual algorithm-specific tech-
niques [12, 13] that verify that algorithmic invariants hold. Because these tech-
niques usually only address error detection, to achieve full resilience they must
be supported by other techniques, such as checkpoint-restart [14] and pointer
replication [15].

To design and deploy software-level resilience schemes application developers
need tools to quantify the effect of faults on their applications and support for
choosing the most appropriate resilience technique for each type of fault. This
paper presents FaultTelescope, a comprehensive approach to supporting both
needs in the form of (i) statistically well-grounded fault injection studies and
(ii) exploration of how the configuration options of resilience mechanism affect
the performance and resilience of individual application kernels and the overall
application.

The importance of analyzing and quantifying the impact of errors on applica-
tion behavior is demonstrated in various studies. As Du et al have shown [16, 17],
resilience is becoming a measurement of quality of linear solver packages. De-
tailed study of output accuracy is found in several fault injection frameworks.
For example, Debardeleben et al [18] document how the numeric error caused
by an injected fault evolves over time. Probabilistic modeling has been used
by Chung et al [19] to help compute the expected recovery time, which can-
not be measured easily for very large scale applications. Sloan et al [20] has
discussed the use of algorithmic checks over sparse linear algebra kernels and
focused mainly on reducing false positive and false negative in error detection.

Resilience studies like these are enabled by fault injection, a technique where
the application is executed multiple times. During each execution the applica-
tion’s state is injected with some software-level manifestation of a low-level
fault. There exist many fault injection tools the simulate various types of faults
in hardware components, ranging from transister-level faults to fail-stop crashes
of entire compute nodes [21, 22, 23].

FaultTelescope supports resilience studies by integrating with the KULFI
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fault injector [24], which models faults as single bit flips in the outputs of a ran-
domly selected instructions of applications compiled into the LLVM instruction
architecture. FaultTelescope presents the results of such studies to developers
by providing visualizations of how application state and output is affected by
injected errors, expressed via developer-specified error metrics. Further, Fault-
Telescope computes confidence intervals of the presented data to enable develop-
ers make well-supported conclusions, while balancing the benefits of improving
the confidence of the analysis against the cost of running more fault injection
experiments.

Finally, a key issue developers face is that different types of faults manifest
themselves very differently to software. For each possible fault type developers
need to select the most appropriate resilience technique for detecting and toler-
ating the fault, as well as the best configuration of the technique. The choice of
technique and its configuration can have a significant effect on the performance
and resilience of the application and the wrong choice can make the applica-
tion more vulnerable to errors than it was originally [25]. FaultTelescope helps
application developers choose the best way to manage all the fault types their
application may be exposed to by enabling them experimentally measure the ef-
fectiveness of various resilience mechanisms and their configurations. To reduce
the cost of searching a large parameter space FaultTelescope enables developers
to first focus on key application kernels and then on the overall application.

At a high level, FaultTelescope provides a comprehensive suite of capabili-
ties that help application developers bridge the gap between low-level faults and
software-level resilience solutions the developers can be confident in. FaultTele-
scope includes

• Efficient architectural-level fault injection based on KULFI

• Statistically sound computations of confidence intervals of the experimen-
tal data

• Hierarhical analysis that operates from kernels to entire applications

The FaultTelescope approach is evaluated in the context of three applications
that represent different application domains: the LASSO [26] solver for the
Linear Solvers domain, the DRC [27] HiFi audio filter for the Signal Processing
domain, and the Hattrick [28] gravity simulator for the Differential Equation
Solvers domain. This paper demonstrates the utility of comprehensive resilience
toolchain for helping developers explore the vulnerability properties of their
application.

The rest of the paper is organized as follows. Section 2 gives an overview of
the experimentation methodology and error model used in FaultTelescope. Sec-
tion 3 presents the structure of the target applications and the fault resilience
techniques used. Section 5 presents how FaultTelescope is used to identify vul-
nerability and performance/resilience tradeoff. Section 6 presents the algorithm
used for selecting the number of fault injection experiments needed in our ex-
periment.
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Figure 1: Overall workflow of FaultTelescope

2. Design Overview

The workflow of FaultTelescope is described in Figure 1 . It performs a fault
injection campaign on a target application by executing the entire application
and/or individual routines in the application multiple times. A single bit flip
is injected each time in a randomly-selected dynamic instruction (a Fault Site).
Information including source code location that corresponds to the fault site
and the final outcome of the application are also recorded. The final outcome
must fall into one of these categories:

• Correct Result: The program runs to completion and outputs the correct
result, as if no error occurred at all.

• Abnormal Termination: Program shows abnormal phenomena such as
dereferencing invalid pointers, triggering numerical explosion, or enter-
ing an infinite loop, which then triggers user-defined or system-defined
exception handlers, resulting in the program being terminated.

• Incorrect Result: Program runs to completion, but produces results that
exceed the user-defined error bound. In our paper we quantify the mag-
nitude of errors using the L2-norm of its difference against the golden
run.

The information above is stored in the fault database for analysis and vi-
sualization. The result analyzer uses the database to determine the number of
necessary experiments for obtaining a statistically-grounded conclusion about
the fault characteristics and resilience of applications.
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3. Target Applications

We demonstrate the use of FaultTelescope on three applications, which rep-
resent three application domains.

3.1. LASSO

The LASSO [26] program is an implementation of the Alternating Direction
Method of Multipliers (ADDR) for solving under-constrained linear problems
Ax = b for x (A has fewer rows than columns) while minimizing some function
f(x). It represents the linear solver application domain. It uses 64-bit precision
and spends most of its time in the following linear algebra operations from
the GNU Scientific Library [29]: matrix-matrix multiplication (MMM), matrix-
vector multiplication (MVM), rank-k update (RK) and Cholesky decomposition
(CD).

We use ADDR to solve Lasso problems, where the function 1
2 ||Ax− b| |

2
2 +

λ · ||x| |1 is minimized. Our experiments focus on linear systems of size {40,
80, 200, 400, 600, 800} × 500 as input. The values in A and b are generated
by sampling a normal distribution with a mean of 0 and a σ of 0.08 and 0.005
respectively.

3.2. DRC

DRC [27] is a sequential program that generates filters for HiFi audio sys-
tems to compensate for the reflection of sounds in a room by using impulse
response measurements of the audio equipment and considering the positions
of the listeners. It represents the signal processing application domain. DRC’s
inputs are stored in Pulse Code Modulation (PCM) format, which is an array of
32-bit floating point numbers representing the samples at each time step. The
computations are performed using 32-bit precision. Most of the execution time
is spent in the GSL implementation of Fast Fourier Transform (FFT) and a
DRC-internal implementation of Finite Impulse Response (FIR) filter genera-
tion. The input used in this paper is an audio file of size 768 kilobytes, which
is sampled at the rate of {30, 40, 50, 60, 70}KHz.

3.3. Hattrick

Hattrick [28] is a sequential application that simulates the motion of bodies
under the effects of gravity to help discover extra-solar planets by inferring their
existence from Transit Timing Variations. It represents the n-body simulation
application domain. Hattrick uses 64-bit precision and spends most of its exe-
cution time in the GSL solver for Ordinary Differential Equations to solve the
system’s equations of motion using the Runge-Kutta method (RK). A given
input is described using three parameters: P is the number of planets, T is the
amount of time to simulate, and A is the accuracy target. In our experiments we
considered the following four inputs: P2T2090A15, P2T3090A15, P2T4090A15
and P3T2090A11, where A15 and A11 denote accuracy targets of 1e − 15 and
1e− 11, respectively.
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Routine Algorithmic Checkpointing Pointer
Detector Replication

ADDR

MM Linear encoding

Inputs No
SYRK Thresholds:
MVM 1e-5 to 1e-8
CD

FRC
FFT Parseval’s theorem.

Inputs No
FIR Sum conservation.

Thresholds:
1e-6 to 1e-8.

Hattrick RK Variable step-size

Periodic 1. None
Timesteps 2. All pointers,
Period: checked at
1, 1e4 one code location

3. All pointers,
checked on each use

Table 1: The resilience techniques applied to each major routine of each application.

The algorithmic error checks utilized by each of the applications are summa-
rized in Table 1, whose resilience techniques will be discussed in the following
Section 4.

4. Resilience Techniques

This section presents the fault characteristics on routines used by the three
target applications, and how these techniques can protect the applications from
soft errors. Note that we are using a more strict criterion when considering
whether an application output is correct. In this section we are considering
only outputs identical to the golden output produced without fault injection as
“correct”, while in real life an output may be acceptable if it’s within a certain
distance from the golden output.

4.1. Error Recovery

A light-weight in-memory checkpointing recovery method is deployed to all
routines in order to enable recovery from segmentation fault exceptions. This is
done by installing a signal handler with the sigsetjmp system call and backing
up inputs at the entry points of the routines.

4.2. Algorithmic Error Detection

Here we describe the fault resilience mechanisms applied to the routines.

4.2.1. Cholesky Decomposition
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Figure 2: Fault characteristics of Cholesky De-
composition given input size 500x500.

GSL’s CD routine has a built-
in assertion that terminates the pro-
gram when the matrix is not positive-
definitive. Since most injected er-
rors cause the assertion to be vio-
lated, most runs of the original CD
are terminated, while those that com-
plete generally finish with very small
errors.

Resilience is applied to CD by ob-
serving that CD decomposes matrix A into L · LT where L is lower-triangular
with a positive diagonal. This operation must maintain the identity Ax =
L · (LTx) [13], which can be computed in O(n2) time. This is significantly
cheaper than the O(n3) complexity of the deterministic CD algorithm. GSL
implements an iterative algorithm that runs faster than O(n3) time but our
experiments show that our checker is still significantly faster.

The use of these resilience techniques have a significant effect on the vulner-
ability of CD to injected errors. Many runs that would otherwise trigger the
assertions finish with very small errors, which means the damage to the inputs
by a single bit flip error is insignificant, and can be easily recovered through
input backup. Cholesky Decomposition benefited significantly from the generic
segmentation fault error handler.

Figure 2 summarizes the fault characteristics of different versions of CD. As
is suggested by the data, this routine benefits more from being able to recover
than actually correcting the outputs while using a tighter error checker threshold
does not correct more runs.

4.2.2. FFT

Figure 3: Detailed characteristics of fault resilient FFT with checker threshold 1e-07

FFT decomposes a function into a sum of sine waves of different frequencies:
f(x) =

∑N−1
n=0 xne

−i2πkn/N for some constant k. It is checked using Parseval’s

theorem:
∑N−1
n=0 |x[n]|2 = 1

N

∑N−1
k=0 |X[k]|2, where x is the original function and

X is its transform. Intuitively it means that the energy of the original function
is preserved by the transform.
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Figure 4: Fault characteristics of FFT given
input size 4M.

This check runs in O(n) time, as
compared to O(nlog(n)) or O(n2) for
the FFT algorithm itself (depending
on the type of FFT problem).

Figure 4 summarizes the fault
characteristics of different versions of
FFT: the possibility of producing in-
correct output is significantly reduced
by the error checkers. In fact, since
most of the errors very large such that
they can be easily detected with even a lenient detector threshold such as 1e-05.
Figure 3 is a temporal RMSD graph, which plots the runs with incorrect results
onto an scatterplot graph. For each of the points, the X coordinate corresponds
to the Dynamic Fault Site ID, or how late in the lifespan of the routine is the
error injected. The Y coordinate corresponds to the magnitude of the errors.

Comparing the two figures one could see that after the error checker is ap-
plied the larger errors are eliminated, but smaller errors persisted. For these
smaller errors, a more strict error checker threshold is only slightly helpful in
correcting them, which translates into a marginal benefit on the correct output
rate.

Since we are already seeing a great improvement in correct runs after apply-
ing error check on FFT, we choose 1e-07 as the checker threshold and take a
closer look at the impact of the smaller errors on a whole application in Section
5.

4.2.3. Finite Impulse Response Filter Generation (FIR)

Figure 5: Fault characteristics of FIR of input
parameter 512K.

The DRC FIR filter algorithm
generates a series of samples over

the function sinc(x) = sin(x)
x and

modulates it with a Blackman win-
dow. It is checked using the in-
variant

∫∞
−∞ sinc(x)dx = 1, which is

preserved by the Blackman window
throughout our experiments. Com-
puting the sum requires O(n) addi-
tions, which is faster compared to the
O(n) trigonometric function evalua-
tions of the non-iterative FIR generation algorithm.

Table 5 shows a summary of the fault characteristics of different versions
of FIR. It is clear that the checker threshold 1e-06 is so tight that when it’s
applied to FIR it caused many false alerts, resulting in many failed runs. In this
case, the error checker is not reliable. As a result, we choose 1e-05 as the error
checker threshold for FIR.

4.2.4. Matrix-Matrix Multiplication
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Figure 6: Fault characteristics of Matrix-
Matrix Multiplication with input parameter
500x500.

A · B is checked using a matrix
vector multiplication, via the iden-
tity: (A · B) · x = A · (B · x), where
x is an error-checking vector (we use
the vector of all 1s). The checker
is asymptotically faster than MMM,
with MVM taking O(n2) time and
MMM O(n3) time.

Table 6 shows the fault charac-
teristics of different versions of the
MMM routine. It could be seen from
the figure that error checker threshold 1e-07 and 1e-08 correct more wrong re-
sults than 1e-06 does. In the experiments we use 1e-06, 1e-07 and 1e-08 as the
error checker thresholds for MM.

4.2.5. Rank-K Update

This algorithm computes αA ·AT + βB, where A and B are matrices.

Figure 7: Fault characteristics of Rank-K Up-
date with input parameter 500x500.

Its results are checked via the
identity (A ·B) ·x = A · (B ·x), where
x is an error-checking vector (we use
the vector of all 1s). Since checking
is done using matrix-vector multipli-
cation, which takes O(n2) time, as
compared to O(n3) time for RK, this
check is very efficient. Like CD, the
error checker and recovery for Rank-
K update fix many runs with incor-
rect results and produce correct re-
sults. However, some of the incorrect runs are not corrected. This is mainly due
to round-off errors in the checker since the checker works in a recursive fashion
and involves many addition operations.

We use 1e-06, 1e-07 and 1e-08 as the error checker thresholds for RK in the
experiments.

4.2.6. Matrix-Vector Multiplication

The Matrix-vector multiplication(MVM) operation computes Ax, where A
is a matrix and x is a vector.

It is checked using a similar identity (xTA)x = xT (Ax). The complexity of
computing xTA is O(n2), the same as the original MVM but using additions
rather than multiplications. Since MVM is applied in Lasso many times to the
same matrix with different vector, the vector xTA can be reused, amortizing
the cost of computing it.

We use 1e-06, 1e-07 and 1e-08 as the error detector thresholds for MV in the
experiments.
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Figure 9: Overhead of fault resilience mechanisms for linear algebra kernels, FFT and FIR

Figure 8: Fault characteristics of Matrix-
Vector Multiplication with input parameter
150x150.

Table 2 summarizes the fault char-
acteristics of Matrix-Vector Multipli-
cation.

The overhead of these algorithmic
checks for linear algebra, FFT and
FIR are shown in Figure 9. As the
figure suggests, the overheads are ex-
pected to become lower as input size
increases.

4.2.7. Runge-Kutta Integrator

RK4, which stands for 4th order
Runge-Kutta method, is a method for solving Ordinary Differential Equations
of the form dy

dx = f(y, x). It advances the variable x by steps of size h and

computes the value y at the next point x + h using the derivative dy
dx at x.

GSL’s Runge-Kutta 4 integrator implementation uses adaptive step-size control
where it simultaneously uses two step sizes h and h

2 . If the difference between
the two computations exceeds a threshold τ , it switches to the smaller step
size to maintain accuracy. If it is smaller than τ

2 , the algorithm switches to a
larger step size. The adaptive step size control algorithm naturally tolerates
soft errors that occurs during either computation. A checkpoint is made every
10000 iterations (denoted as Ckpt in configurations). We chose 10000 because
this makes the overhead of checkpointing almost negligible (to compare, an
interval of 1, 10 and 100 are not, but they perform almost as well as 10000.)
This routine is tested with the second-order nonlinear Van der Pol oscillator
equation in the GSL documentation [29].
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Overhead

Ckpt <1% (Negligible)

1Rep / 1Rep+Ckpt 21.4%

FullRep / FullRep+Ckpt 54.3%

Table 2: Overhead of different versions of the RK4 Integrator

5. Result Analysis

Figure 10: Fault Characteristics of the RK4 Integrator

In this section, we present
how the fault resilience mech-
anisms can protect the appli-
cations from single bit-flip er-
rors and the performance cost
it takes to achieve the protec-
tion. We show that the choice
of fault checker threshold and
replication strategy can have
an impact on the performance
overhead and/or accuracy un-
der certain circumstances.

We show the confidence interval of probabilities of all three outcomes of
every application configuration by presenting them with rectangles on a 2-D
plane. The Binomial Confidence Intervals of the rates of abnormal termination
and perfect output are mapped to the X and Y axes respectively. The rates of
incorrect results is one minus the sum of the other two and can be mapped to
the distance towards the line segment passing (1,0) and (0,1). Intuitively, it is
more desirable to have a rectangle on the top-left, which means 100% correct
outputs and no abnormal terminations. Intuitively, these visualizations give a
clear overview of the fault resilience characteristics of application runs.

5.1. LASSO

Figure 11 presents the characteristics and running time overhead of LASSO
before and after applying fault resilience.

From the fault characteristics figure we can see the clusters that clearly
reflect the effectiveness of the fault resilience techniques:

• The rectangles around the bottom-right cluster represent non-fault-tolerant
(Non-FT) runs ((a) in Figure 11). For these runs, the probability of ab-
normal termination is high and the probability of of producing perfect
(identical) results is low.

• The rectangles around the top-left cluster represent fault-tolerant ones ((b)
in Figure 11). For those runs, the probability of abnormal termination is
low and the probability of producing a correct output is high. Further,
cluster (b) is divided into sub-clusters corresponding to input sizes (b1 =
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Figure 11: Fault Characteristics and Resilience Overhead of LASSO.

{40, 80} · 500, b2 = 200 · 500, b3 = {400, 600} · 500, b4 = 800 · 500). Their
RMSD histogram (as illustrated at the bottom of Figure 11 would be only
slightly different) and are omitted.

The trend the fault-tolerant cluster evolves with input size echoes with the
diminishing trend of the running time overhead. As input size goes up, the per-
fect run rate would increase while the SegFault rate and running time overhead
would decrease. This is because when the input size gets larger, a greater frac-
tion of time is spent in cblas dsyrk (the Rank-K update). Therefore the overall
application resilience characteristics would be shaped by that of this routine.

On the other hand, the error checker threshold used does not have a signif-
icant on correctness or performance. The thresholds chosen here for the algo-
rithmic checkers are all adequate for eliminating incorrect runs. The rollback
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Figure 12: Detailed fault characteristics of LASSO, without (top) and with (bottom) fault
resilience (Error checker threshold set to 1e-07).

mechanisms are very useful for recovering from exceptions as well.

5.2. DRC

Figure 13 shows the error characteristics and running time overhead of DRC
before and after applying fault resilience.

From the fault characteristics figure we can see the two clusters that clearly
reflect the effectiveness of the fault resilience techniques:

• The non-fault-tolerant runs of DRC are clustered around the center-left
region ((a) in Figure 13), indicating smaller chances of abnormal termina-
tion and greater chances of producing perfect results.

• Fault-tolerant runs of DRC are clustered around the top-left region ((b)
in Figure 13). Regardless of their thresholds chosen and the computation
precision, the error checkers are roughly equally effective.

Overall the characteristics (in terms of the chance of abnormal termination,
correct and incorrect answer) of DRC and Lasso are very similar. However, the
choice of fault checker threshold does have a much more significant impact on
performance on DRC than it does on LASSO. The overhead induced by error
checkers increase as the threshold decreases from 1e-05, the most lenient checker
threshold, to 1e-08, the tightest checker threshold. In fact, error checker 1e-08
is so tight that it even considers results from a non-faulty run to be incorrect.
This is because the 1e-08 is already below the machine error on adding up a
large amount of single-precision data. One can see the phenomenon from the
detailed temporal RMSD plot in Figure 14. The incorrect runs with RMSDs
greater than 1e-6 are largely eliminated.
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Figure 13: Fault Characteristics and Resilience Overhead of DRC

5.3. Hattrick

The application Hattrick is very different from DRC and Lasso, and so are
its characteristics.

Figure 15 shows the overall error characteristics of Hattrick. We can observe
from the figure that:

• The bottom-right cluster contains non-fault-tolerant runs. They have the
highest chance of producing abnormal terminations and incorrect results.

• The top-right cluster contains runs with only pointer replication. It slightly
reduces the abnormal termination rate while increasing the chance of pro-
ducing perfect results. From the figures it can be seen the degree of repli-
cation has only a slight influence on the outcomes (In contrast, whether
or not replication is present has a great influence.)
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Figure 14: Detailed fault characteristics of DRC, without (top) and with (bottom) fault
resilience (Error checker threshold set to 1e-06).

• The bottom-left cluster contains runs with only checkpointing. More runs
complete but the proportion of perfect runs remained relatively silent.

• The top-left cluster contains runs with both checkpointing and replication.
They are as tolerant to SegFaults as the cluster(c) and produce as much
perfect results as cluster (b).

From the four clusters we can see that checkpointing and replication improve
resilience in two orthogonal directions: checkpointing fixes abnormal termina-
tions and “moves” a cluster towards the left. It does not, however, have the
ability to raise or maintain the chance of producing correct results. In fact, Fig-
ure 16 explains the reason behind this: a single bit-flip error would most likely
cause Hattrick to produce a very small error in its outputs (most runs have an
RMSD of smaller than 1e-20), however, in rare cases, it can cause greater errors
(the ones with RMSDs ranging between 1e-10 and 1).

On the other hand, replication is more effective in correcting results. The
degree of replication, however, does not significantly improve accuracy.

Performance-wise, checkpointing at a long interval is almost free of overhead.
Our study suggested that the usage of an overly small checkpointing interval
(less than 100 iterations) may hurt performance without a significant advantage
in improving correctness. Replication is much more expensive and the degree
of replication has a direct impact on performance overhead.
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Figure 15: Fault Characteristics and Resilience Overhead of Hattrick. (Inputs 1 to 4 corre-
spond to P2T2090A15, P2T3090A15, P2T4090A15 and P3T2090A11 respectively)

Figure 16: Detailed fault characteristics of Hattrick. The dynamic RMSD plots are almost
visually identical for both fault-tolerant and non-fault-tolerant versions and only one figure is
shown here for the sake of brevity.

16



6. Determining Number of Experiments

The effect of errors on applications is an inherently complex process and is
difficult to determine the number of fault injection experiments needed to ade-
quately characterize it. In FaultTelescope, we try to characterize an application
by relating its dynamic fault site positions to the outcomes. When the outcome
is Incorrect Results, the error magnitudes are also considered. The data has
been presented in the visualizations in Section 5 and are used to determine the
number of experiments. This section shows the process.

FaultTelescope quantifies the amount of relevant information contained in
a set of fault injection experiments by modeling its visualizations in terms of
a statistical model that takes the available information about a given error
injection (e.g. scatterplot x-axis) and predicts the outcome of the error on the
application (e.g. scatterplot y-axis). The model uses input in the form of (i) ID
of the dynamic fault site, (ii) ID of the static fault site, (iii) index of the flipped
bit in the injected instruction’s output.

It then categorizes runs into the classes: “Abnormal Termination”, “Incor-
rect Result” and “Correct Result”. Finally, for the “Incorrect Result” runs it
predicts the RMSD of the result error. Its structure is illustrated in Figure 17.

Figure 17: Structure of the FaultTelescope evaluation models. Shaded procedures are where
the tree model is applied.

The model’s accuracy is evaluated using two metrics:

• 1st-level categorization model: misclassification rate. Since we have 3 cat-
egories, a random guess would result in an error rate of 66.7%. With the
knowledge of the training set, the tree model should produce a much
smaller misclassification rate.

• 2nd-level regression model: R-Square, defined as 1 −
∑N
i=1 (ŷi − yi)2 /∑N

i=1 (yi − ȳ)2, which describes how much of the variance in the data the
model is able to capture. (The R-square is not applicable to the 1st-level
classification.)
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FaultTelescope selects the number of experiments incrementally, by perform-
ing more and more experiments and observing the effect of the additional train-
ing data on the accuracy of the model. For a given sample, FaultTelescope
performs a two-fold cross-validation for the model (train on half the data then
predict for the other, and vice versa) to obtain the misclassification rate and
R-square. When FaultTelescope finds the sample size where the accuracy of
the model stops improving as it increases, it stops the fault injection campaign
since this number of samples is sufficient to characterize the relationship between
the injection properties and application outcomes considered by FaultTelescope.
Additional improvements in accuracy can only come from adding more features
into the analysis, not by running more experiments.

Figure 18: Trend of R-square and misclassification rate as dataset size grows. (A random
guess = misclassification rate of 66.7%)

Figure 18 illustrates the procedure using experiments on the Matrix Vec-
tor Multiplication routine, executed on 500x500 matrices. As the number of
fault injection experiments increases, we see that both the misclassification rate
and R-square drop steadily until they stabilize at a sample size of 49947 ex-
periments. As the data shows, this sample size is sufficient for the purposes of
FaultTelescope’s visualization and is much smaller than the ∼ 1e9 experiments
required to fully explore the experimental space. This is the sample size chosen
for this routine and FaultTelescope employs the same procedure for all routines
and applications.

7. Conclusion

We present FaultTelescope, a tool that supports application developers in
making applications resilient to errors induced by soft faults. FaultTelescope
carries out fault injection campaigns, which visualize the relationship between
the time a fault occurs and its effect on application results. With statistical
analysis on the results, FaultTelescope helps developer draw conclusions on the
application’s fault characteristics and the effectiveness of the fault resilience
techniques with a high confidence.

We demonstrated the use of FaultTelescope for the Lasso, DRC and Hattrick
applications. The results suggest that an HPC numerical application developer
should take the following into consideration when writing fault-resilient pro-
grams:
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• Algorithm-specific error checkers are effective at detecting incorrect ap-
plication results, as illustrated in our experiments with MVM, Rank-K
update and FFT. During the process the developer should realize that
the precision limit of the checker may not be able to correct all results.
Example of this is the checker for FFT.

• By recovering applications vulnerable to assertion failures and access vio-
lations, the developer can recover many correct runs of Cholesky Decom-
position and the Runge-Kutta integrator that would otherwise fail.

• The RK4 Integrator routine demonstrates significantly different character-
istics from linear algebra, FFT and FIR routines. It also requires differ-
ent resilience techniques, replication and checkpointing. It’s advisable to
apply checkpointing first due to its effectiveness and low overhead. Repli-
cation trades performance for enhanced accuracy.

Actionable conclusions and tradeoffs in many other applications can be dis-
covered with the FaultTelescope workflow in a similar fashion. We believe Fault-
Telescope can benefit the production of fault resilient numerical applications.
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